Nitric oxide blunts the endothelin-mediated pulmonary vasoconstriction in exercising swine.

نویسندگان

  • Birgit Houweling
  • Daphne Merkus
  • Marjolein M D Dekker
  • Dirk J Duncker
چکیده

We have previously shown that vasodilators and vasoconstrictors that are produced by the vascular endothelium, including nitric oxide (NO), prostanoids and endothelin (ET), contribute to the regulation of systemic and pulmonary vascular tone in swine, in particular during treadmill exercise. Since NO and prostanoids can modulate the release of ET, and vice versa, we investigated the integrated endothelial control of pulmonary vascular resistance in exercising swine. Specifically, we tested the hypothesis that increased NO and prostanoid production during exercise limits the vasoconstrictor influence of ET, so that loss of these vasodilators results in exaggerated ET-mediated vasoconstriction during exercise. Fifteen instrumented swine were exercised on a treadmill at 0-5 km h(-1) before and during ET(A)/ET(B) receptor blockade (tezosentan, 3 mg kg(-1) I.V.) in the presence and absence of inhibition of NO synthase (N(omega)-nitro-L-arginine, 20 mg kg(-1) I.V.) and/or cyclo-oxygenase (indometacin, 10 mg kg(-1) I.V.). In the systemic circulation, ET receptor blockade decreased vascular resistance at rest, which waned with increasing exercise intensity. Prior inhibition of either NO or prostanoid production augmented the vasodilator effect of ET receptor blockade, and these effects were additive. In contrast, in the pulmonary bed, ET receptor blockade had no effect under resting conditions, but decreased pulmonary vascular resistance during exercise. Prior inhibition of NO synthase enhanced the pulmonary vasodilator effect of ET receptor blockade, particularly during exercise, whereas inhibition of prostanoids had no effect, even after prior NO synthase inhibition. In conclusion, endogenous endothelin limits pulmonary vasodilatation in response to treadmill exercise. This vasoconstrictor influence is blunted by NO but not by prostanoids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Withdrawal of vasoconstrictor influences in local metabolic coronary vasodilation.

THE CORONARY CIRCULATION has a remarkable ability to match myocardial oxygen delivery with myocardial metabolism (3, 22). For many years this coupling between coronary blood flow and myocardial oxygen consumption has been proposed to be primarily dependent on production of local metabolites released from cardiomyocytes in proportion to the metabolic rate. Despite decades of intensive research, ...

متن کامل

Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine.

Prostacyclin and nitric oxide (NO) are produced by the endothelium in response to physical forces such as shear stress. Consequently, both NO and prostacyclin may increase during exercise and contribute to metabolic vasodilation. Conversely, NO has been hypothesized to inhibit prostacyclin production. We therefore investigated the effect of cyclooxygenase (COX) inhibition on exercise-induced va...

متن کامل

NO and prostanoids blunt endothelin-mediated coronary vasoconstrictor influence in exercising swine.

Withdrawal of the endothelin (ET)-mediated vasoconstrictor influence contributes to metabolic coronary vasodilation during exercise. Because production of nitric oxide (NO) and prostanoids increases with increasing shear stress and because NO and prostanoids are able to modify the release of ET, we hypothesized that the withdrawal of ET-mediated coronary vasoconstriction during exercise is medi...

متن کامل

Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress.

Angiogenesis inhibition with agents targeting tyrosine kinases of vascular endothelial growth factor receptors is an established anticancer treatment, but is, unfortunately, frequently accompanied by systemic hypertension and cardiac toxicity. Whether vascular endothelial growth factor receptor antagonism also has adverse effects on the pulmonary and coronary circulations is presently unknown. ...

متن کامل

Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction.

Endothelin (ET)-1 contributes to the regulation of pulmonary vascular tone by stimulation of the ET(A) and ET(B) receptors. Although activation of the ET(A) receptor causes vasoconstriction, stimulation of the ET(B) receptors can elicit either vasodilation or vasoconstriction. To examine the physiological role of the ET(B) receptor in the pulmonary circulation, we studied a genetic rat model of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 568 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005